

Credits

Music from Geodesium "The MarsQuest Collection" 4.0 min

Credits

Images

- Michael Barber
- Adam Block
- Jim Brooke
- Tom Carrico
- Antonio Cidadao
- Mike Ford
- Jim Gleason
- Robert Glender
- Ed Grafton
- Geroge Greenfield
- Ed Hagerman
- Bob Holzer
- Gilbert Jones
- Robert Kuberek

- Chip Levinson
- Larry Owens
- Dabe Rajla
- Mark de Regt
- Roth Ritter
- Matthew Russell
- John Smith
- Benoit Schillings
- Stephen Shields
- Don Shotz
- Gary Stevens
- Loke Tan
- Diane Zeiders
- Martin van der Voort

For my part I know nothing with any certainty, but the sight of the stars make me dream.

-- Vincent VanGogh

Network Nebula Tom Carrico

M33 Matthew Russel

Rosette Nebula, Robert Glender

NGC 4631 Diane Zeiders, Jim Brooke

with Digital Cameras

- What is "Deep Sky" Astrophotography?
 - Time exposure photography of astronomical objects in the night sky
 - Includes Galaxies, Nebula, Clusters, Comets, Meteor Showers
 - Does not include the brighter planets, the Moon

- What is "Deep Sky" Astrophotography?
 - Time exposure photography of astronomical objects in the night sky
 - Includes Galaxies, Nebula, Clusters, Comets, Meteor Showers
 - Does not include the brighter planets, the Moon

What kinds of Cameras can be used?

- What is "Deep Sky" Astrophotography?
 - Time exposure photography of astronomical objects in the night sky
 - Includes Galaxies, Nebula, Clusters, Comets, Meteor Showers
 - Does not include the brighter planets, the Moon
- What kinds of Cameras can be used?
 - Digital Single Lens Reflex (SLR)
 - Removable Lens Plentiful Adapters
 - Through the Lens Focusing
 - Excellent for Deep Sky

Astronomical CCD Cameras

- Built for Astronomy
- Sensitive, Low Noise
- The Best for Deep Sky

Digital SLR Cameras

- Large CCD/CMOS chips –
 approaching 35mm film size
 - No Laptop Needed in the Field
- Excellent Long Exposure Quality
- Some Cameras have Astro Features
 - Can use for Astro and Vacations!
- Price: \$900 \$3000

Digital SLR Cameras

- Large CCD/CMOS chips –
 approaching 35mm film size
- No Laptop Needed in the Field
- Excellent Long Exposure Quality
- Some Cameras have Astro Features
 - Can use for Astro and Vacations!
- Price: \$900 \$3000

Astronomical CCD Cameras

- Large CCD/CMOS chips –
 approaching 35mm film size
 - Laptop is a must in the field
 - Refrigerated CCD Sensors
 - Extremely Low Noise Very LONG exposures possible
 - Broad Bandwidth (with Mono)
 - Price: \$8,000 \$20,000

What can you do with a Digital Camera?

Total Lunar Eclipse
October 27, 2004

What can you do with a Digital Camera?

Canon 10D Takahashi Epsilon 160 22-4min @ ISO 800 Rick Krejci Total exposure: 88min

SBIG STL11000M, RED-9x1200sec, GREEN-5x900, BLUE-10x1200sec, AP155 William McLaughlin Total exposure: RED-180min, GREEN-75min, BLUE-200min

Canon 20Da M8/M20 Region Takahashi FSQ106/G11 Single 300 second exposure at ISO800 Erkc Blackhurst & Chriss Hoffman

Canon 20Da

Houston: we have a problem

Digital Cameras for Astrophotography

- Sensors have broad spectrum response – from IR to UV
- This interferes with color correction
- IR blocking added to correct
- Cuts starting at around 650nm
 - Cuts most of H α (656.3nm)

Houston: we have a problem

Digital Cameras for Astrophotography

- Modified Digital SLR's
 - Remove the factory IR cut filter from CCD
 - Makes camera *unusable* for general photography – everything has a red hue (can use an expensive IR block filter on each lens)
 - Restores Hα response, great for astronomy
 - Modify the factory IR cut filter
 - Extends the RED/IR response of the chip (Hα is better, not as good as *no* IR block)
 - Minimizes color balance problems for general use, can correct using camera's white balance
 - Excellent compromise

Houston: we have a problem

Digital Cameras for Astrophotography

- Other Issues with using Digital SLR's
 - Focus is difficult in the dark
 - Can use magnifier
 - Canon 20Da has an LCD focus aid
 - Long Exposures Amplify Defects
 - Defects show up as star like points and internal heat can cause glow on right side of image
 - Dark Frames to the rescue
 - Same temp and exposure
 - 20Da has auto dark
 - Some cameras have much less noise

Digital Cameras for Astrophotography

Canon 20Da

- "a" indicates "astronomy"
- First digital SLR manufactured for astrophotography
- 8.2 Mega Pixel
- IR block filter modified to extend into IR for improved $H\alpha$
- Can be used for general photography
- "Live View" mode video to LCD at 5x or 10x for fine focusing (a first for digital SLR)
- Much better noise reduction
- Option to take and apply "Dark Frames" with each exposure

Price: \$2199

Extras you'll need:

"T" ring adapter
Electronic shutter release
Extra Battery
Compact Flash Memory Card
Lens (for general use)

Digital Cameras for Astrophotography

- Canon 20D Spectrum Enhanced
 - Two versions available:
 - IR block replaced with clear filter (must use exclusively for astronomy)
 - IR blocker replaced with a "Type I" astronomical filter (use a 2nd filter for general use, or just use white balance adjustment)
 - Modified and warranted by Hutech
 - 8.2 Mega Pixel

Price:

\$1895 (Canon filter removed) \$1995 (Astronomical Type I) \$1995 (Clear filter)

Extras you'll need:

"T" ring adapter
Electronic shutter release
Extra Battery
Compact Flash Memory Card
Lens (for general use)

Digital Cameras for Astrophotography

- Canon Rebel 350D Spectrum Enhanced
 - Two versions available:
 - IR block replaced with clear filter (must use exclusively for astronomy)
 - IR blocker replaced with a "Type I" astronomical filter (use a 2nd filter for general use, or just use white balance adjustment)
 - Modified and warranted by Hutech
 - 8.2 Mega Pixel

Price:

\$1250 (Canon filter removed) \$1350 (Astronomical Type I) \$1350 (Clear filter)

Extras you'll need:

"T" ring adapter Electronic shutter release Extra Battery Compact Flash Memory Card Lens (for general use)

Digital Cameras for Astrophotography

- Canon Spectrum Enhanced Cameras
 - Adirondack Video Astronomy
 - http://www.astrovid.com/
- Canon 20Da
 - Ocean Side Photo and Telescope (OPT)
 - http://www.optcorp.com/

Imaging Techniques

Focusing Techniques

- DSLR Focus
 - Software that controls your camera from a laptop
 - Allows you to fine tune focus before long exposures
 - Controls the camera via USB and a special cable (must have a parallel printer port)
 - But, eliminates the advantage of not requiring a laptop
- Lens Marking
 - Through the lens focusing is difficult at night
 - Focus at FULL APERTURE, image a couple of stops higher
 - Must manually focus
 - Use view finder magnifier
 - With telephotos or other lenses
 - Focus on moon, mark focus point with silver Sharpie
 - Zoom lenses mark focus for several zoom settings
 - Never assume that focus is the same
- Through Telescope
 - Use view finder magnifier, focus on bright star NEAR Target
 - Verify focus with LCD using magnified view (carefully)

Imaging Techniques

Exposures

- DSLR sensors are not cooled
- In warm weather, may need to limit exposure to 3-5min
 - This minimizes heat induced bright areas near edges
 - Stack several short exposures
- In cold weather, 5-10 minute exposures are possible
- Take as many exposures as you can
 - Stacking will add the exposure times to make a much better image
 - With bright objects, take several very short exposures to capture detail in brighter areas.
 - Luminance Layering can be used later to add detail

ISO Settings

- Determines the gain or sensitivity of sensor
- High settings (1600 or 3200) can get grainy
- Use lower settings for most deep sky (400-800)
- Meteor showers ISO 200, leave shutter open 10min or more
- Experiment determine best settings for different situations and different cameras

Imaging Techniques

- Guiding (correcting for tracking errors)
 - Use of a polar aligned mount tracking never perfect
 - If you don't have a polar aligned mount you need one
 - Use guide scope manually with illuminated reticle eyepiece or an autoguider system (such as SBIG STV - \$2000)
 - Usually not necessary for wide angle lens shots (meteor showers or Milky Way) – mount piggy-back on scope
 - A must through any high power telephoto or telescope
 - Can use "easy guiders" instead of guide scope
 - Not necessary for star trail shots
 - All you need is a tripod

