


# THE ALPO SATURN SECTION

# **PROGRAMS AND RECENT OBSERV ATIONS**

JULIUS L. BENTON, JR. COORDINATOR ALPO SATURN SECTION

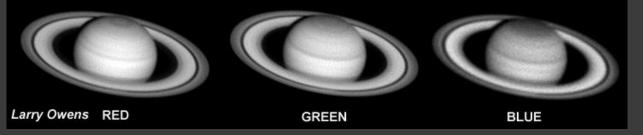
E-Mail: Website: Saturn e-Group: jlbaina@msn.com http://www.alpo-astronomy.org/ http://tech.groups.yahoo.com/group/Saturn-ALPO/

November 6, 2011

#### **Value of Amateur Planetary Observations**

- Complete freedom to observe whenever desired & for extended periods of time.
- Standardized systematic observations produce long-term continuous records of solar system phenomena that can be passed on to professional astronomers.
- Earth-based monitoring by amateurs of changing atmospheric features on planets like Saturn have often helped professionals select targets for high-resolution spacecraft imaging.
- In addition to systematic, simultaneous visual work, observers routinely produce excellent digital images at different wavelengths of light that are useful to professional astronomers.
- The ALPO serves to encourage and coordinate regular, systematic investigations of the Sun, principal planets, and other members of our solar system with instrumentation readily available to amateur astronomers.

#### **Suggested Instrumentation for Observing Saturn**


- Telescopes with excellent, precisely-aligned optics.
  - ✓ 10.2 cm (4.0 in) or greater for refractors.
  - 15.2 cm (6.0 in) or greater for Newtonian reflectors and catadioptrics.
  - Nevertheless, remarkable work has been done with much smaller apertures.
- Equatorial mount with slow-motion controls & a clock-drive.
- Quality color filters of known wavelength transmission, plus a variable-density polarizer.
- For achromatic refractors, a filter that suppress the secondary spectrum.
- Astronomical Almanac or access to a suitable printed or electronic ephemeris.
- Digital imaging equipment (IR blocking filters are suggested).
- Laptop (PC or Mac) with software for capturing, stacking, manipulation, & processing of images of Saturn.

#### **Keys to Meaningful Results**

- Keep accurate records of image orientation, date & time (UT), location of the observing site, telescope used, magnifications, filters, etc.
- Use standard Saturn observing forms for recording observations (available for download on the ALPO Website).
- Submit observational data regularly during an apparition (electronic submittal of images & scanned drawings is encouraged).
- Start observing early in the apparition, continue through opposition, & persevere until the planet nears conjunction with the Sun.
- Widely-spaced observations in time, or those that are poorly-planned or lack supporting data, have minimal scientific value.
- Strive for *simultaneous observations* (i.e., independent, systematic studies by two or more observers on the same date & at the same time).

### Some Achievements by ALPO Saturn Observers

- Systematic visual observations over many years have shown that distinct belts & zones are not just occasionally seen on Saturn.
- Discrete phenomena are more obvious with color filters & variable-density polarizers.



 Cassini's & Encke's divisions are not the only "gaps" in Saturn's rings (e.g., several "intensity minima" in the rings were routinely seen by amateurs <u>prior</u> to the Voyager missions).



 Ring C can be seen as well as imaged at the ansae & in front of the Saturn's globe with small-to-moderate apertures.

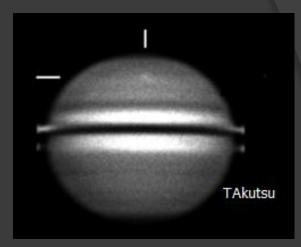


 Analysis of long-term observations of recurring dark features & bright spots identified a pattern for major atmospheric outbursts on Saturn.

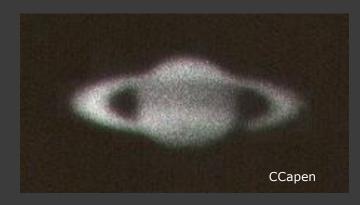


- Analysis of CM data collected for long-enduring spots on Saturn suggests a definite variance in the rotation rates of the SEB & NEB.
- Over a Saturnian year (29.5 Earth-years) belt & zone intensity data reveal a subtle seasonal effect on the planet.
- The tenuous Ring E outside Ring A was seen by amateurs prior to the Voyager flybys.
- Amateurs periodically reported dusky radial "spokes" in Ring A & B prior to Voyager.




Recent observations of radial ring "spokes"




**RVandebergh** 

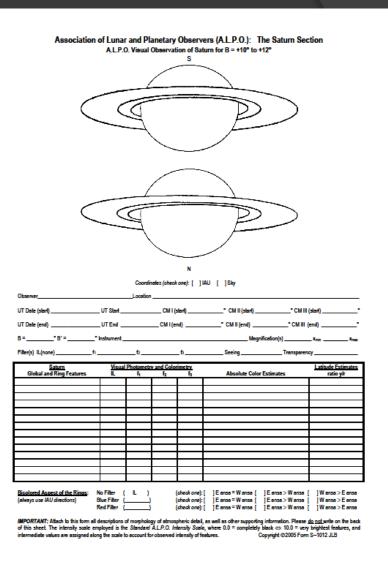
• Digital imaging by skilled observers reveal discrete phenomena on Saturn not always seen visually & which have been used to alert professional astronomers.





• The *bicolored aspect of the rings* & curious *brightness asymmetries around* Ring A have been seen visually as well as captured on film & with digital imagers.






# **ALPO Saturn Observing Programs**

- Visual numerical relative intensity estimates of belts, zones, & ring components in integrated light & with color filters.
- Full-disc drawings of Saturn using standard ALPO observing forms.
- Digital imaging of Saturn's globe, rings, & satellites at various wavelengths.
- Central meridian (CM) transit timings of discrete detail on Saturn's globe.
- Visual estimates & measurements of belt & zone latitudes.
- Visual observations & imaging of "intensity minima" detected in the rings.
- Visual studies & imaging of the bicolored aspect & curious asymmetries in brightness around the circumference of Ring A.
- Accurate timing & imaging of stellar occultations by Saturn's globe & rings.
- Specialized studies of Saturn at small ring inclinations or when they are edgewise to our line of sight (e.g., transits of satellites & their shadows across the globe).
- Visual observations & magnitude estimates of Saturn's satellites.
- Routine descriptive reports to accompany visual observations or images.

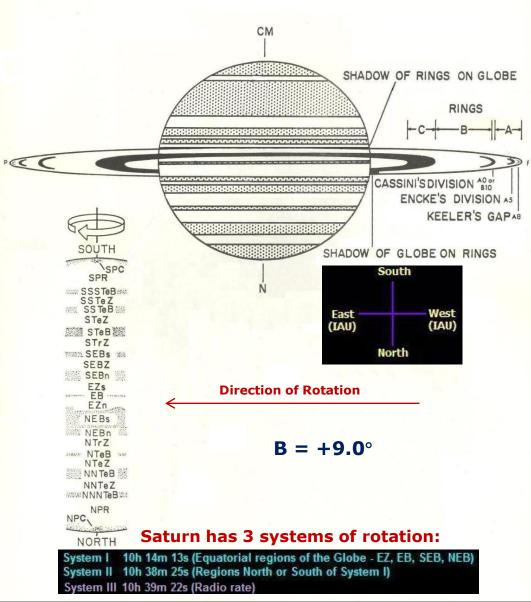
#### Sample ALPO Saturn Drawing Blank

Although regular digital imaging of Saturn is very important, observers **should not neglect** to make routine visual numerical relative intensity estimates of globe and ring features.



### 2004-11 Professional-Amateur Cassini Observing Patrol

- The Saturn Pro-Am effort began on April 1, 2004 when *Cassini* started observing the planet at close range.
- Observers are urged to participate in the following projects as the Cassini mission continues this apparition & beyond:
  - Using classical broadband filters (Johnson UBVRI system) on telescopes with suggested apertures  $\geq$  31.8cm (12.5in), observers should image Saturn with a 890nm narrow band methane (CH<sub>4</sub>) filter.
  - Observers should image Saturn every clear night in search of individual features, their motions and morphology. Resulting data can serve as input to the *Cassini* imaging system, thereby suggesting where interesting (large-scale) targets exist.
  - Suspected changes in belt & zone reflectivity (i.e., intensity) & color are useful, so visual observers can play a vital role by making careful visual numerical relative intensity estimates in Integrated Light (no filter) & with color filters of known transmission.
  - The *Cassini* team can combine ALPO images with data from the *Hubble Space Telescope* & from ground-based observatories.
  - Observations should be sent to the ALPO Saturn Section for prompt forwarding to the *Cassini* team.


### **Geocentric Phenomena in UT for Saturn**

|                                          | 2010-11 Apparition                                                                  | 2011-12 Apparition                                                                  |
|------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Conjunction<br>Opposition<br>Conjunction | 2010 Oct 01 <sup>d</sup> UT<br>2011 Apr 04 <sup>d</sup><br>2011 Oct 13 <sup>d</sup> | 2011 Oct 13 <sup>d</sup> UT<br>2012 Apr 15 <sup>d</sup><br>2012 Oct 25 <sup>d</sup> |
| <b>Opposition Data</b> :                 |                                                                                     |                                                                                     |
| Equatorial Diameter Globe                | 19.3″                                                                               | 19.0″                                                                               |
| Polar Diameter Globe                     | 17.5″                                                                               | 16.9″                                                                               |
| Major Axis of Rings                      | 43.8″                                                                               | 43.0″                                                                               |
| Minor Axis of Rings                      | 6.6″                                                                                | 28.6″                                                                               |
| Visual Magnitude (m <sub>v</sub> )       | +0.4m <sub>v</sub>                                                                  | +0.2m <sub>v</sub>                                                                  |
| B =                                      | +8.6°                                                                               | +13.7°                                                                              |
| Declination                              | –2° 57′ 15.1″                                                                       | -7° 42′ 00″                                                                         |

•

•

#### **Standard Nomenclature for Saturn**



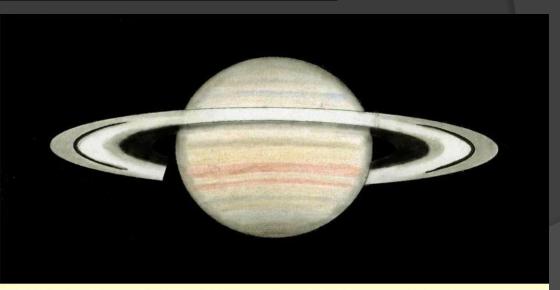
#### **Pre-Opposition Views of Saturn in 2010-11**



 
 T.Ikemura
 Ring Long dia 36.81" Ring short dia 6.40"

 2010/11/20 21:15:08(UT)
 380mm Newtonian DFK21AU04

 I=197.7 II=160.0 III=338.2
 15fps AVI 180sec


 De=+10.0 E.Dia=16.15" P=357.00
 2058 frames composite



#### s2010Nov26 0559UT Piotr Malinski IR-RGB



Shadow of the Globe on the Rings is toward the East (IAU) prior to Opposition



Disk Drawing: 0644UT, 167x and 250x, Seeing= AIII-IV, Tr= Good CM1: 142.5 CM2: 309.1 CM3: 67.8

2011 January 09, Start: 0615UT Finish: 0644UT, Seeing=AIII-IV 203mm Newtonian Reflector, 167x and 250x, B=10.2 Ds= 7.7 Disk Diameter= 17.4", Ls= 17. Paul G. Abel, Leicester UK

December 13, 2010 20:39UT I: 155 II: 95 III: 246 S: 8/10 T: 3/5 © Christopher Go (Cebu, Philippines)



Saturn 30 Dec 2010 17:39.0 Z CMIII:248.3 Anthony Wesley, Murrumbateman Australia

November 6, 2011

#### More Pre-Opposition Views of Saturn in 2010-11





06.02 UT

20 January 2011 South up John Sussenbach C11 f/25, Flea3 camera and Astronomik IRRGB filters



Shadow of the Globe on the Rings is toward the East (IAU) prior to Opposition

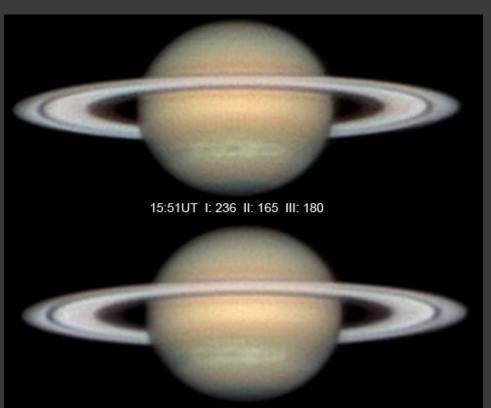


SATURN February 15, 2011 1035UT. Paul Maxson M250 F/32. CM I = 199.8 CM II = 246.0 CM III = 319.9 D = 18.6".



March 2, 2011 17:19UT I: 143 II; 55 III: 111 S: 8/10 T: 4/5 © Christopher Go (Cebu, Philippines)




February 24th 2011, 18:31 UTC, CMIII 326 degrees, Dia 18.8 arc sec's Ring Op Earth 9.8 degrees, Alt 58 degrees 13 min's, seeing 7 to 8/10

> RGB 16" F 4.5 Newt working at F 23.7 PGR Flea3 Imaged at Broken Hill Australia by Trevor Barry

ALPO Saturn Section

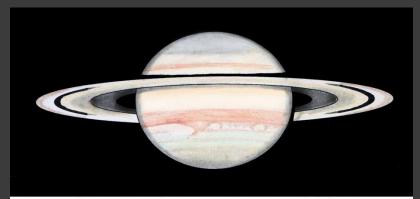
November 6, 2011

### Saturn at Opposition in 2010-11



16:02UT I: 242 II: 171 III: 187

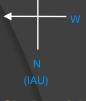
Saturn: NED and Seeliger Effect April 4, 2011 S: 6-7/10 T: 3/5 © Christopher Go (Cebu, Philippines)




April 4th 2011, 12:35 UTC, CMIII 69.9 degrees, Dia 19.3 arc sec's Ring Op Earth 8.6 degrees, Alt 48 degrees 49 min's, seeing 5 to 6/10

> RGB 16" F 4.5 Newt working at F 23.7 PGR Flea3 Imaged at Broken Hill Australia by Trevor Barry

The Seeliger Opposition Effect is an apparent brightening of Saturn's rings during a very short interval near opposition. It is most likely due to coherent back-scattering of  $\mu$ -sized icy particles in the rings when the phase angle between Sun-Saturn-Earth is <0.3°.


#### **Post-Opposition Views of Saturn in 2010-11**



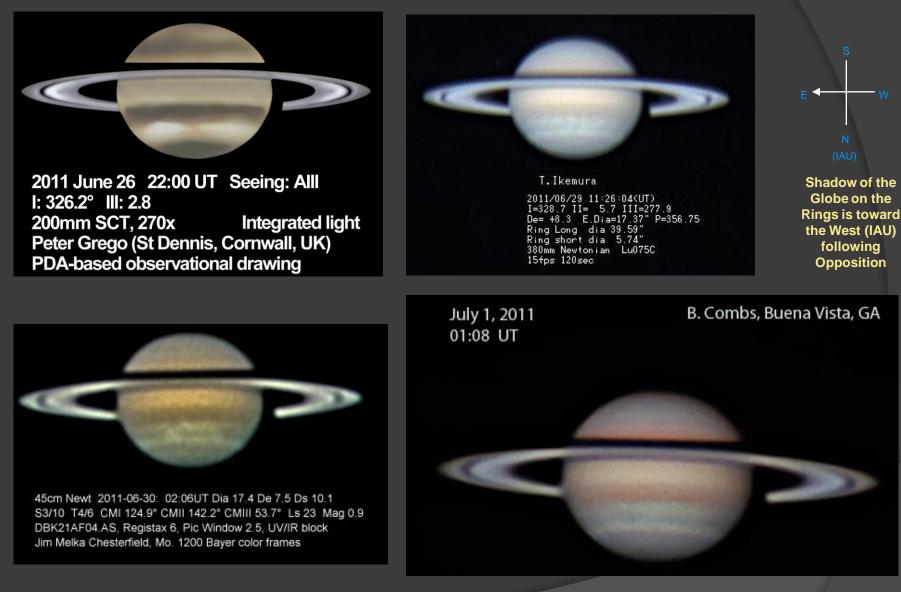
2011 April 22nd-23rd, Start: 2132UT Finish: 0021UT 203mm Newtonian Reflector, S:All-IV, Transp: Average B= 8.0, Ds= 9.2, Disk Diameter= 19.2", Ls= 21 Paul G. Abel, Leicester UK



I: 320.5° III: 237.0° 300 mm Newtonian x200 Integrated light Peter Grego (St Dennis, Cornwall, UK) PDA-based observational drawing



Shadow of the Globe on the Rings is toward the West (IAU) following Opposition






SATURN June 18, 2011 0254UT. Paul Maxson M250 F/32, resized 1.2x. CM I = 102.3 CM II = 146.1 CM III = 72.0 D = 17.8".

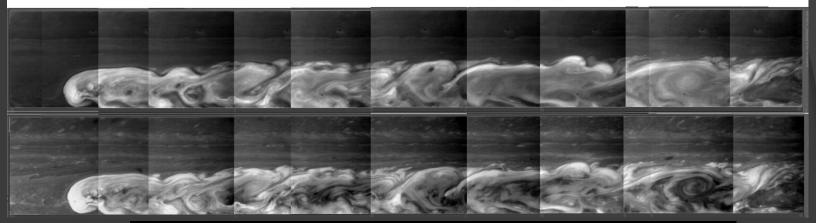
November 6, 2011

#### More Post-Opposition Views of Saturn 2010-11



November 6, 2011

- First detected by *Cassini* at 23:26UT on December 5, 2010 at 35°N Saturnigraphic latitude with progressive growth:
  - On December 5<sup>th</sup> the storm spanned 1,300km (800mi) N to S (latitudinally) & 2,500km (1,600mi) E to W (longitudinally).
  - By December 24<sup>th</sup> the storm grew to 10,000km (6000mi) latitudinally & extended nearly 1/3 the way around the planet, a distance of 100,000km (62,000mi) longitudinally.
  - By the end of January & February 2011, the storm has swollen in latitudinal extent to 15,000km (9,000mi) around +43 & longitudinally the "tail" had encircled the entire planet.
  - The storm's latitudinal expansion has progressively occupied the region between Saturnigraphic latitude 35°N & 40°N, and the storm is still active.




Images courtesy of NASA's Cassini Mission

- White spots arise as columns of material break through the upper NH<sub>4</sub>-ice cloud layer & spread out.
- Complex swirls intermix with darker material dredged up from deeper down in Saturn's atmosphere.

Saturn's great northern storm, 2011 Feb.26: closeups from Cassini

Top: first rotation. Bottom: second (next?) rotation. Cassini ISS raw images from NASA/JPL/Space Sciences Inst., compiled by John Rogers. North up.



#### Saturn North Temperate Zone Storm

Infrared false-color RGB[MT3,MT2,CB2] composite acquired by Cassini spacecraft on February 26, 2011

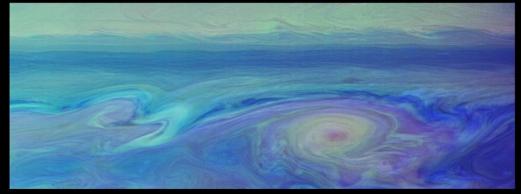
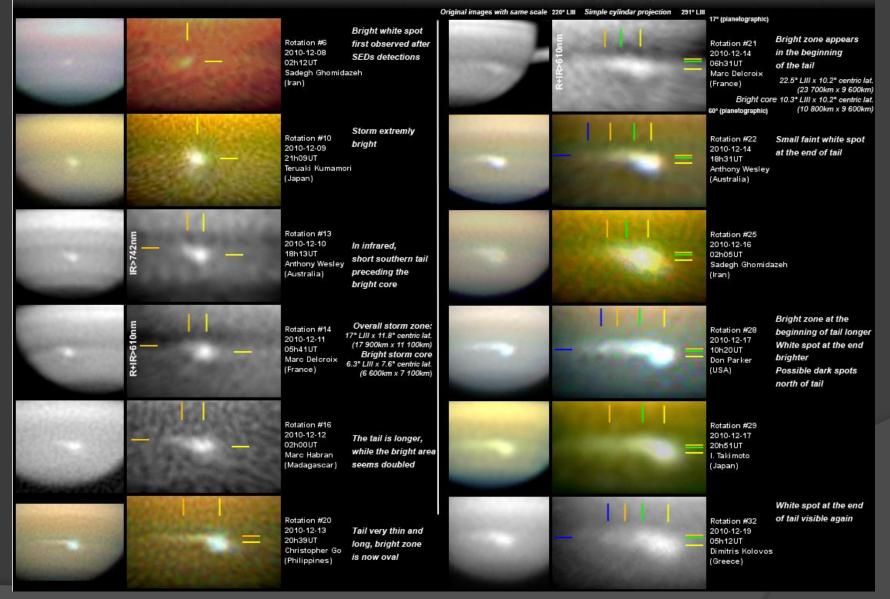
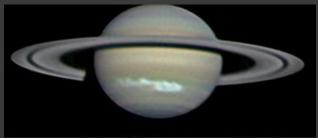



Image credit: NASA / JPL / Space Sciences Institute / composite by Mike Malaska

- The NTrZ storm is 500 times larger than the those seen by *Cassini* in late 2009 into early 2010.
- Prior to the August 2009 vernal equinox, when the Sun was shining on the planet's southern hemisphere, the location of all observed storm activity was in the STrZ near 35°S Saturnigraphic latitude, referred to by *Cassini* scientists as "storm alley".
- Now that the Sun is north of the rings, it is early spring in Saturn's northern hemisphere.
- The NTrZ storm's emergence at 35°N Saturnigraphic latitude shows how shifting seasons & solar illumination can dramatically stir up weather on Saturn.
- The shadow cast by Saturn's rings has a strong seasonal effect related to the varying position of the ring shadow.
- It is a continuing mystery why Saturn stores energy for decades, then releases it all at once (unlike Jupiter & Earth, which have numerous storms occurring at any one time).
- Why the obvious hemispheric symmetry in storm eruption occurs is unknown.
- The NTrZ storm is the largest & most intense ever recorded by the *Voyager* & *Cassini* spacecraft. Observers will recall the Great White Spot imaged by the *Hubble Space Telescope (HST)* in 1990.
- Lighting flash rates associated with the NTrZ storm are 10 times more frequent than during other storms monitored since *Cassini* arrived at Saturn in 2004.
- There appears to be a link between lightning storms on Saturn & the emergence of Ring B spokes.


- Soon after the first detection of the storm last December, the *Cassini* team issued an appeal to amateur astronomers worldwide to collect as many images as possible.
- Amateur's responded right away, submitting myriad images throughout the apparition, helping *Cassini* scientists track the storm as it has developed over time.
- The first image received by the ALPO Saturn Section occurred on December 10, 2010.




• The next several slides present chronological samples of ALPO observations of this phenomenal NTrZ storm from early December 2010 up to the present.

#### Saturn's 2010 North tropical storm evolution - December 5th-December 19th, 2010

images sent to author, or from SAF/ALPO Japan/PVOL, compiled/scaled/reprocessed on 2010/12/21 by Marc Delcroix, Société Astronomique de France (delcroix.marc@free.fr - http://astrosurf.com/planetessaf/saturne)



November 6, 2011



30 Dec 2010 18:49.2 Z Anthony Wesley, Murrumbateman Australia



January 14,2011 20:22UT I: 164 II: 151 III: 263 S: 7/10 T: 3/10 © Christopher Go (Cebu, Philippines)





February 9, 2011 S: 7-8/10 T: 4/5 Christopher Go (Cebu, Philippines)



08:41:40 UT

D. Parker Coral Gables, FL 16-in Newt @ F-22 SKYnyx 2-0 camera Astrodon Filters: R=I Series CM1=35.3 CM2=282.6 CM3=350.5 G,B=E Series **RGB** Image

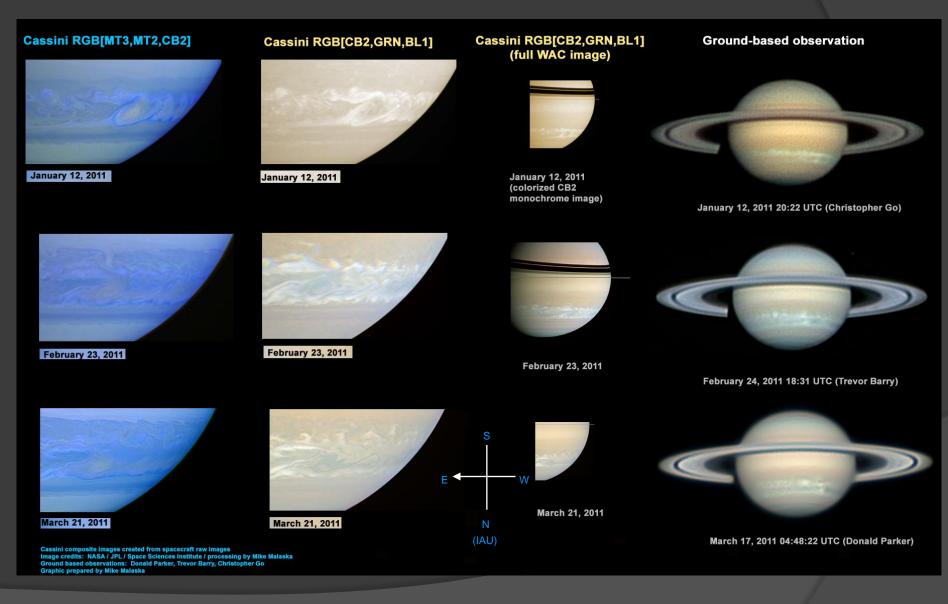
Seeing fair: 4-6 Trans: 5 Wind NW 0-5 kts. Temp: 62.2 F Dewpoint: 55.0 Alt: 60 degs.

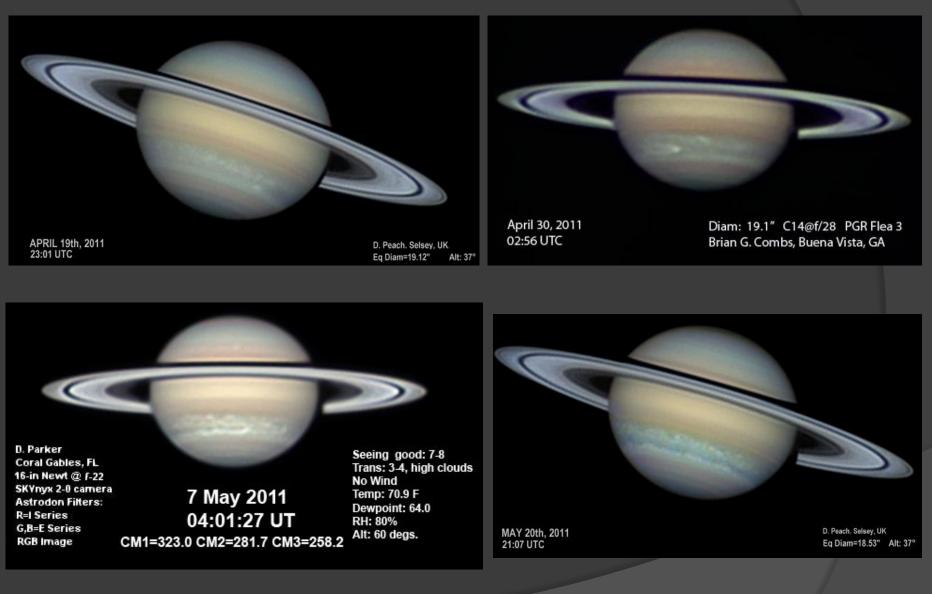


March 6th 2011, 15:28 UTC, CMIII 51.8 degrees RGB 16" F 4.5 Newt working at F 23.7 PGR Flea3 Imaged at Broken Hill Australia by Trevor Barry



14 March, 2011 05:07 UT


I: 126.1 II: 27.6 III: 69.2 Dia: 19.1" C14@f/28 PGR Flea 3 Brian G. Combs, Buena Vista, GA USA



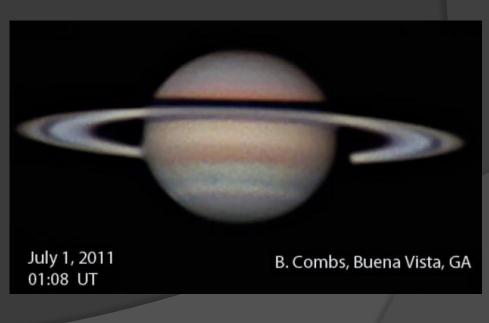

APRIL 8th, 2011 23:47 UTC

D. Peach. Selsey, UK. Eg Diam=19.20" Alt: 36°

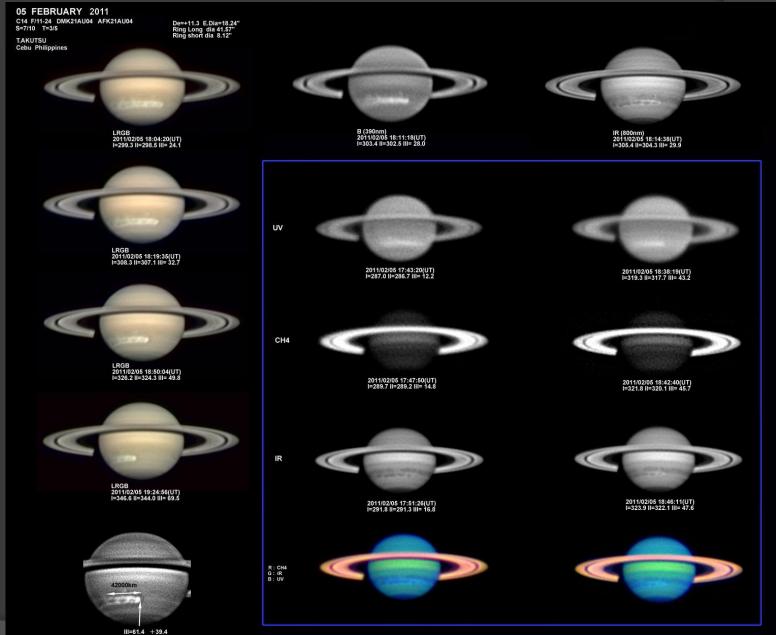
#### Comparison of *Cassini* images with ALPO Ground-based images January thru March 2011











SATURN June 13, 2011 0317UT. Paul Maxson M250 F/32, resized 1.2x. CM I = 214.7 CM II = 59.4 CM III = 351.3 D = 17.9".



June 23rd 2011, 08:57 UTC, CMIII 9.9 degrees Ring Op Earth 7.4 degrees, Alt 59 degrees RGB 16" F 4.5 Newt working at F 23.7 PGR Flea3 Imaged at Broken Hill Australia by Trevor Barry



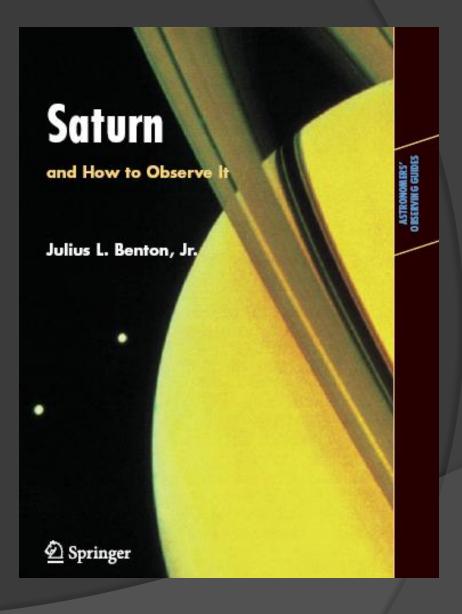
#### Sample Images of Saturn at Various Wavelengths in 2010-11



November 6, 2011

ALPO Saturn Section

### **Getting Ready for 2011-12**


Saturn entered conjunction with the Sun on October 13, 2011.

Observers should send their images, drawings, descriptive reports, & other data to the ALPO Saturn Section as soon as possible so that preparation of the 2010-11 apparition report can begin.

In early November early risers should be able to see Saturn in the morning sky just before sunrise.

#### More About How to Observe Saturn

#### <u>Saturn and How to Observe It</u> is a comprehensive guide to ALPO Saturn observing programs and techniques.

