Getting Started in Deep Sky Astrophotography

Tim Geib

Topics

- Beginning deep sky astrophotography
- Getting started with minimum frustration
- Data capture
- Data processing

Why astrophotography?

- Go deeper than visual
 - CCD/CMOS more sensitive than human eye (especially to Hydrogen emissions)
- Share with others
- Satisfaction of capturing detail

Human Eye vs. DSLR

Rosette Nebula sketch

Michael Vlasov - deepskywatch·com

Astrophotography Elements

- Data collection requires precision
 - Equipment
 - Knowledge
 - Practice
- Processing constantly evolving state of the art

Hurdles, Barriers, Frustrations, Why some give up

- Dim targets = Long exposures=Tracking errors
- Long exposures = noise
 - Drawing the signal out of the noise
- Tracking errors
 - Polar misalignment
 - Mechanical errors
 - Flexure

- Mount pointing accuracy
 - Field of view
- Error messages, drivers, etc.
- Processing time
 - learning the tools
 - keeping up with advancing state of the art

Equipment

- Mount
- Telescope
- Camera
- Peripherals
 - Guide scope
 - Guide camera
 - Laptop to guide mount and control camera

Mount

- Equatorial
 - Tracks motion of sky as earth rotates
 - Accuracy important
 - Go-to preferred
 - Polar alignment
 - Software Celestron All-Star, PEM Pro, SkyX T-point
 - Drift Alignment eyepiece or software assisted
 - Guiding

Camera

- DSLR with live view (CMOS)
 - Economical, used are viable
 - Poor red sensitivity (can be modified)
 - Noisier, harder to noise correct

CCD

- More expensive (\$2000 and up)
- Smaller field of view (except very high \$\$\$)
- Cooled = lower noise & easier to correct
- Mono or Color
- Mono
 - Higher efficiency
 - Best narrow band camera
 - Requires filters and wheel
 - More post processing

Scopes

- Refractor
 - Fast, available in short focal lengths
 - Subject to color fringing
 - Edge of field distortion
- Reflector
 - Can be fast
 - Needs collimation
 - Edge of field distortion

- Cassegrain
 - Compact
 - Long focal lengths (undesirable)
 - Mirror flop
 - Frequent collimation needed
- Camera Lens
 - Short focal lengths
 - Focus challenges
 - Most expensive per inch

Image Scale – How Much Can You See?

- Image scale in arc-seconds/pixel
 - (206 x pixel size in microns)/focal length in millimeters
 - Micron = micrometer = 0.001 mm
 - Full moon = 1800 arc seconds
- Canon DSLR with 500 mm refractor or 100 mm telephoto lense
 - 206 x 5.2 microns / 500 mm ~ 2 arc seconds per pixel
 - 206 x 5.2 microns / 100 mm ~ 10 arc seconds per pixel
 - About the limit for unguided tracking
- Seeing in Georgia is typically 2 4 arc seconds

Image Scale vs. Seeing

Guiding Options

- Guiding scope
 - Easier to learn
 - Small, light weight guide scope
 - Light guide camera
 - Sturdy attachment to main scope or mount
 - Differential flexure

- Off-axis guider
 - Fewer, dimmer guide stars
 - Hard to focus
 - Requires more back focus
 - No differential flexure

Key Points

- Start imaging using <u>short focal lengths</u> about 500 mm
 - Will sacrifice little, if any, detail
 - Larger field of view less susceptible to mount pointing errors
 - Larger pixel scale less sensitive to tracking errors
- Guide errors less than one pixel will not harm end result
 - Mounts with < 2 arc seconds mechanical error cost \$9,000 and higher
 - So guiding is essential to deep sky astrophotography

Suggested Starter Imaging Rig

- Mount Celestron AVX or similar performance
- Refractor, 400 600 mm focal length
 - Two speed focuser
 - Doublet with high quality glass or triplet
- Canon DSLR, possibly used
 - Upgrade with spectrum mod in future
- More forgiving
 - Pointing errors
 - Tracking errors

One More Thing: Accessories

- Camera control
 - Remote shutter control
 - Camera control software
 - Backyard EOS DSLR's
 - Nebulosity
 - Maxim DL
 - The SkyX camera add-on
- Guiding software
 - PHD, PHD2
 - Guide dog
 - Meta guide
 - others

- Battery
- T-ring
- Nose piece
- Bahnitov mask
- Laptop
- Field flattener
- Focal reducer

Celestron AVX, Canon DSLR, Miniguide scope, Nebulosity

Capturing Data

Let's Go Take Some Pictures!

- Set up as much as you can at home first
- Establish connections to mount, camera, guide camera
 - Trouble shoot driver issues, ASCOM issues etc.
 - Shoot some pictures
 - Focus on a distant object if available
 - Don't waste your precious dark sky time
- Polar alignment (a topic for another day)
- Focus
- Guider calibration
- What do about that long exposure noise?

Capture Strategy

Maximize Signal to Noise Ratio

- Target signal accumulates faster than noise
- Longer exposures mean more difference between target and noise
- Practical limit on length tracking, airplanes and other misfortunes
- Statistics are your friend!
 - Wish you'd paid more attention in school?
 - Stack multiple exposures
 - Signal is constant (same place)
 - Noise is random (moves around frame)
 - Averaging cancels noise

How long is enough?

- The number and duration of exposures needed depends on the target brightness, focal ratio, light pollution, transparency and other factors
- Thumb rule: SNR doubles with the square root of the exposure duration
 - Dark sky site, bright galaxy; three hours can produce good results with a DSLR
 - Average emission nebula, narrow band filters; over 20 hours may be needed
- Soooooo: Take lots of data as long as you can

300 second vs. 900 second exposure

Key Points

- Setup and connect everything possible during daylight. Better yet, before you head to the field
- Take longest exposures gear will allow
- Maximize total image time

Processing

Let's do something with that data

Processing Steps

- Calibration
 - Remove noise, correct uneven illumination
- Alignment and Stacking
- Enhancements (the Magic)
 - Stretching
 - Color correction
 - Contrast enhancement
 - Noise removal
 - Etc., etc., etc.

Processing Tools

- Perform calibration, alignment, stacking, enhancement
- Budget suite
 - DeepSkyStacker
 - Photoshop Elements

- Traditional high end suite
 - CDDStack
 - Photoshop
 - Registar (mosaic)
- Modern high end suite
 - Pixinsight

Calibration

- Correcting images for:
 - read noise noise from camera/chip electronics, present in shortest exposures
 - thermal noise (or dark current) Charge that accumulates over time due to heating of imaging chip
 - uneven illumination imperfections in the optics, such as dust motes, vignetting, etc.
- Dark frames
 - Contain read noise and thermal noise
 - Match duration to light frames
 - Subtract from each light frame before alignment and stacking
- Flat frames
 - Model imperfections complex enough to be a separate topic

Alignment and Stacking

- Align all stars perfectly correct x,y shift and rotation between frames
- Best done by purpose built software

- Stacking
 - Pixel by pixel averaging or outlier rejection to determine correct value at each location on frame
 - Random noise averages out, target signal enhanced

Calibration and stacking comparisons

Raw 15 min frame

Dark subtracted

Stack of 41 frames

Enhancement - Stretching

Unstretched data

- The Histogram
 - Count of pixels at each intensity level

Enhancement - Stretching

• Stretched data

Histogram after stretching

More enhancement

• Stretched data

Enhanced contrast

Which Image is Better?

Key Points

- All workflows start with calibration
 - Start with dark frame subtraction
 - Add flat field and bias as you learn more
- Several stacking algorithm choices (average, median, etc.) are available. Learn which works best in each situation.
- Many other enhancement techniques available. Study online resources.
- Pixinsight being rapidly adopted by many imagers. More features per \$ than any other suite.

Good First Targets

Name	Exposure Length	Number of Exposures	Comments
Andromeda Galaxy (M31)	5 minutes	36	Fall target
Orion Nebula (M42)	2 minutes	36	Winter target. High dynamic range. Can be processing challenge. Blending longer exposures yields better results.
Lagoon Nebula (M8)	5 minutes	36	Spring target
M81/M82	5 minutes	36	Up in winter/spring (now!)

Resources

- Pixinsight Resources http://pixinsight.com.ar/,
 http://pixinsight.com/forum/index.php
- Google Astro Imaging Channel
- Bill Snyder Astrophotography good links
- Deep Sky Colors
- Thierry Legault Astrophotography (book)
- Harry's Astroshed
- Bob Franke
- Neil Fleming

Summary

- Basis for what to do
- Start with short focal lengths
- Guiding highly recommended
- Setup as much during daylight as possible
- Take longest exposures rig will allow
- Maximize total image time

- Calibration start with dark frames
- Align and stacking multiple frames of the same target
- State of the art is Pixinsight,
 Photoshop is not gone but fading fast
- Learn a workflow for enhancements
- State of the art constantly improving
 - Many online free resources

Questions? Want know more?